首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2386篇
  免费   180篇
  国内免费   5篇
电工技术   21篇
综合类   2篇
化学工业   569篇
金属工艺   125篇
机械仪表   160篇
建筑科学   40篇
能源动力   153篇
轻工业   208篇
水利工程   21篇
石油天然气   5篇
武器工业   2篇
无线电   344篇
一般工业技术   480篇
冶金工业   112篇
原子能技术   54篇
自动化技术   275篇
  2023年   27篇
  2022年   17篇
  2021年   95篇
  2020年   60篇
  2019年   62篇
  2018年   83篇
  2017年   81篇
  2016年   85篇
  2015年   79篇
  2014年   118篇
  2013年   165篇
  2012年   219篇
  2011年   251篇
  2010年   160篇
  2009年   184篇
  2008年   128篇
  2007年   88篇
  2006年   96篇
  2005年   85篇
  2004年   68篇
  2003年   58篇
  2002年   48篇
  2001年   52篇
  2000年   53篇
  1999年   41篇
  1998年   65篇
  1997年   25篇
  1996年   12篇
  1995年   12篇
  1994年   15篇
  1993年   11篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有2571条查询结果,搜索用时 31 毫秒
111.
Morphological details of calcium silicate hydrate (C–S–H) stemming from the hydration process of Portland cement (PC) phases are crucial for understanding the PC‐based systems but are still only partially known. Here we introduce the first soft X‐ray ptychographic imaging of tricalcium silicate (C3S) hydration products. The results are compared using both scanning transmission X‐ray and electron transmission microscopy data. The evidence shows that ptychography is a powerful method to visualize the details of outer and inner product C–S–H of fully hydrated C3S, which have fibrillar and an interglobular structure with average void sizes of 20 nm, respectively. The high‐resolution ptychrography image enables us to perform morphological quantification of C–S–H, and, for the first time, to possibly distinguish the contributions of inner and outer product C–S–H to the small angle scattering of cement paste. The results indicate that the outer product C–S–H is mainly responsible for the q?3 regime, whereas the inner product C–S–H transitions to a q?2 regime. Various hypotheses are discussed to explain these regimes.  相似文献   
112.
Engineering living tissues that simulate their natural counterparts is a dynamic area of research. Among the various models of biological tissues being developed, fiber‐shaped cellular architectures, which can be used as artificial blood vessels or muscle fibers, have drawn particular attention. However, the fabrication of continuous microfiber substrates for culturing cells is still limited to a restricted number of polymers (e.g., alginate) having easy processability but poor cell–material interaction properties. Moreover, the typical smooth surface of a synthetic fiber does not replicate the micro‐ and nanofeatures observed in vivo, which guide and regulate cell behavior. In this study, a method to fabricate photocrosslinkable cell‐responsive methacrylamide‐modified gelatin (GelMA) fibers with exquisite microstructured surfaces by using a microfluidic device is developed. These hydrogel fibers with microgrooved surfaces efficiently promote cell encapsulation and adhesion. GelMA fibers significantly promote the viability of cells encapsulated in/or grown on the fibers compared with similar grooved alginate fibers used as controls. Importantly, the grooves engraved on the GelMA fibers induce cell alignment. Furthermore, the GelMA fibers exhibit excellent processability and could be wound into various shapes. These microstructured GelMA fibers have great potential as templates for the creation of fiber‐shaped tissues or tissue microstructures.  相似文献   
113.
Magnificent elongation of bridge span length, especially of recently constructed cable stayed bridges and suspension bridges, can be achieved by technological as well as new material development of orthotropic steel deck systems. One such effort is to install curved bulkhead plates inside longitudinal u-ribs, which was analytically and experimentally demonstrated to reduce significant amount of concentrated stresses without sacrificing self-weight of the whole structure. In this paper, the optimal shape of more effective bulkhead plates is characterized by computational analysis. And it is verified from fatigue tests of a 3-dimensional full-scale structure that the fatigue performance can be significantly improved by installing the optimal bulkhead plates and by fabricating the structure out of recently developed high performance steel for bridges.  相似文献   
114.
Fuel cells have received worldwide attention as a next-generation renewable energy technology. However, catalyst cost and durability are the main issue hampering the commercialization of fuel cells. Many studies have focused on the physicochemical properties of the carbon support to improve the catalyst’s properties. Mesoporous carbons are suitable candidates because of their appropriate structural characteristics, including high surface area, large pore size, and regularly interconnected mesopores that permit efficient diffusion of the reactants and by-products. In this study, supports made from chestnut-like carbon consisting of platelet carbon nanofibers were fabricated by selective catalytic gasification of activated carbon. Pt/C catalysts were synthesized from these support structures using the impregnation method. Catalyst performance and characteristics were investigated by N2 adsorption/desorption isotherms, X-ray diffractions, and the rotating disk electrode technique for the oxygen reduction reaction.  相似文献   
115.
For the purpose of utilizing induction heating in the evaporation process, the effects of induction coil design and droplet size on induction heating efficiency are investigated. Electro-magnetic simulations with various induction coil designs were conducted to predict the electro-magnetic field distribution. The induction coils were fabricated in order to verify the simulation results under atmospheric evaporation test conditions. The electro-magnetic simulation results indicated that the magnetic field became widened around the Zn droplet when the size of the Zn droplet increased. This in turn attributed to the increase in induction heating energy efficiency. The energy efficiency of the induction coil with 4-windings was the highest among the 3-, 4-, and 5-windings induction coils. Energy efficiency tendencies derived by the atmospheric evaporation tests corresponded well to the simulation results, and maximum energy efficiency was measured to be 42% under the atmospheric evaporation tests.  相似文献   
116.
Journal of Mechanical Science and Technology - This paper presents the design and modeling of the UNI-Copter, a portable spherical unmanned aerial vehicle (UAV) that is powered by a single rotor....  相似文献   
117.
A thermally cured epoxy‐siloxane hybrid material that is curable at low temperature (L‐expoxy hybrimer) was investigated for use as an LED encapsulant. This new hybrimer was fabricated using thermally initiated, cationic polymerization of cycloaliphatic epoxy oligosiloxane (CAEO) resin, derived from non‐hydrolytic sol – gel, mixed with oxetane hardener in the presence of a hexafluoroantimonate‐type thermo‐cationic initiator. The L‐epoxy hybrimer was cured at a lower temperature (below 120 ° C) than previously reported for an epoxy hybrimer with anhydride hardener (above 180 ° C). The L‐epoxy hybrimer showed high thermal resistance to yellowing under long‐term high temperature condition, and maintained good optical transmittance. Also, it had a high refractive index (up to 1.57), as well as the hardness (Shore D 80), and low water‐vapor permeability, w hen the new hybrimer was used to encapsulate an LED, it showed good adhesion without cracks or delamination and maintained their initial performance after the long‐term aging tests (120 and 85 ° C at 85% humidity). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39968.  相似文献   
118.
The electric field induced microdomain orientations has been an interesting research topic. In this article, the effect of nanoparticle surface functionality on microdomain alignments in block copolymer/nanoparticle hybrid thin films was investigated with transmission electron microscopy experiments. The presence of gold nanoparticles influenced the microdomain orientation behaviors of block copolymer/nanoparticle thin films. The possibility for complete alignment normal to the substrate was illustrated by controlling electric field strength, concentration, and surface ligands of nanoparticles. This work provides basic and essential data to understand the properties and behaviors of emerging block copolymer/nanoparticle hybrid thin films.  相似文献   
119.
This research explores the production of low-moisture, high-rank coal using a batch-type, laboratory-scale, circulating fluidized bed to dry low-rank Indonesian coal with a high moisture content of 35 wt%. The operation was performed using air as a fluidization gas in a riser (a 4-m-tall pipe with an inner diameter of 0.04 m) at a gas velocity ranging from 2.0 to 2.7 m/s and a riser temperature of 80 to 150°C. The electric heaters were installed in the upper part of a downcomer to prevent the condensation of the evaporated moist- ure. The drying rate of the coal was investigated in terms of the inlet gas temperature, the gas velocity, and the drying time in order to determine the optimum operating conditions. Changes in the moist- ure content of the coal, before and after the experiments, were char- acterized by a proximate analysis, an ultimate analysis, the higher heating value (HHV), the lower heating value (LHV), a particle size analysis, and by the equilibrium moisture content. The results show that 70 to 80 wt% (wet basis, wb) of the total moisture can be reduced when the gas velocity of the riser is 2.0 m/s and the gas temperature is 150°C. In experiments, a simple mathematical model based on the heat and mass balances and a thin-layer drying model were simul- taneously used to predict the drying behavior of coal under the given operating conditions. The results of the model are similar to those of the experiment.  相似文献   
120.
The development of a biomaterial substitute that can promote bone regeneration in massive defects has remained as a significant clinical challenge even using bone marrow cells or growth factors. Without an active, thriving cell population present throughout and stable anchored to the construct, exceptional bone regeneration does not occur. An engineered micro-channel structures scaffold within each trabecular has been designed to overcome some current limitations involving the cultivation and habitation of cells in large, volumetric scaffolds to repair massive skeletal defect. We created a scaffold with a superior fluid retention capacity that also may absorb bone marrow cells and provide growth factor-containing body fluids such as blood clots and/or serum under physiological conditions. The scaffold is composed of 3 basic structures (1) porous trabecular network (300–400 μm) similar to that of human trabecular bones, (2) micro-size channels (25–70 μm) within each trabecular septum which mimic intra-osseous channels such as Haversian canals and Volkmann’s canals with body fluid access, diffusion, nutritional supply and gas exchange, and (3) nano-size pores (100–400 nm) on the surface of each septum that allow immobilized cells to anchor. Combinatorial effects of these internal structures result in a host-adapting construct that enhances cell retention and habitation throughout the 3 cm-height and 4 cm-length bridge-shaped scaffold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号